翻訳と辞書
Words near each other
・ Nils Grevillius
・ Nils Grönvall
・ Nils Gude
・ Nils Gunnar Lie
・ Nils Gustaf Ekholm
・ Nils Gustaf Nordenskiöld
・ Nils Gustafsson
・ Nilphamari Government High School
・ Nilphamari Sadar Upazila
・ Nilphamari Stadium
・ Nilphamari-1 (Jatiyo Sangshad constituency)
・ Nilphamari-2 (Jatiyo Sangshad constituency)
・ Nilphamari-3 (Jatiyo Sangshad constituency)
・ Nilpotence theorem
・ Nilpotent
Nilpotent algebra (ring theory)
・ Nilpotent cone
・ Nilpotent group
・ Nilpotent ideal
・ Nilpotent Lie algebra
・ Nilpotent matrix
・ Nilpotent operator
・ Nilpotent orbit
・ Nilpotent space
・ Nilradical
・ Nilradical of a Lie algebra
・ Nilradical of a ring
・ Nilratan Sircar
・ Nils
・ Nils (album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nilpotent algebra (ring theory) : ウィキペディア英語版
Nilpotent algebra (ring theory)
In mathematics, specifically in ring theory, a nilpotent algebra over a commutative ring is an algebra over a commutative ring, in which for some positive integer ''n'' every product containing at least ''n'' elements of the algebra is zero. The concept of a nilpotent Lie algebra has a different definition, which depends upon the Lie bracket. (There is no Lie bracket for many algebras over commutative rings; a Lie algebra involves its Lie bracket, whereas, there is no Lie bracket defined in the general case of an algebra over a commutative ring.) Another possible source of confusion in terminology is the ''quantum nilpotent algebra'', a concept related to quantum groups and Hopf algebras.
==Formal definition==
An associative algebra A over a commutative ring R is defined to be a nilpotent algebra if and only if there exists some positive integer n such that 0=y_1\ y_2\ \cdots\ y_n for all y_1, \ y_2, \ \ldots,\ y_n in the algebra A. The smallest such n is called the index of the algebra A. In the case of a non-associative algebra, the definition is that every different multiplicative association of the n elements is zero.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nilpotent algebra (ring theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.